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Abstract

This report discusses an algorithm for merging hyperellipsoidal clusters� The e�ective merging radius between

two clusters is introduced� and this measure is used to determine the order in which clusters are combined� We

continue to merge clusters until a desired number of clusters is reached� or until the minimum e�ective merging

radius is larger than some predetermined threshold�

� Introduction

Clustering algorithms are used for a variety of applications including pattern recognition� data compression� and
data analysis� Although it can be straighforward to �nd representative clusters for a given data set when the number
of natural clusters in the data is known a priori� it is di�cult to automatically determine the number of clusters
when it is not given� It is therefore useful to use a large number of clusters for the initial clustering of the data� after
which a cluster merging algorithm can be employed to �nd a smaller set of representative clusters�

The k�means clustering algorithm ��� uses a Euclidean distance measure to determine the distance between two
data samples� and therefore attempts to group data into hyperspherical regions� The positions for each cluster are
automatically generated by the k�means algorithm� Once k�means has �nished� we calculate a covariance matrix
for each cluster� giving us a hyperellipsoidal representation for each cluster� and therefore a starting point for the
merging algorithm which we will present� Initial clusters containing only a few outlying data samples or having a
singular covariance matrix are deleted from the system and ignored in subsequent processing�

In this report� we will assume that we are given a set of K hyperellipsoidal clusters as a starting point� The
position of each cluster is speci�ed by a mean vector� �

i
� The shape� size� and orientation of each cluster is speci�ed

by a covariance matrix 	i� The relative size of each cluster with respect to the other clusters in the set is determined
by the number of elements assigned to that cluster� Ni� Our goal is to reduce the number of clusters needed to
adequately describe the distribution of the data that was clustered� This merging algorithm was �rst described in
�
� and ����

� Cluster Merging

Our cluster merging algorithm tries to identify a pair of clusters� from our initial set of K clusters� that can be
combined into a single cluster� The single cluster that results from merging two separate clusters needs to adequately
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Figure �� De�ning Eective Merging Radius for Clusters i and j

represent the distribution of the underlying data� Once this pair of clusters is combined into a single cluster� the
algorithm continues by selecting the next pair of clusters that are likely candidates to be merged�

When we combine two clusters into a single cluster� it is straightforward to determine the parameters of the
resultant cluster without recalculating statistics from the original data� If clusters are de�ned by a mean vector�
�
i
� covariance matrix� 	i� and the number of cluster elements� Ni� then combining clusters i and j produces a new

cluster with the following statistics�
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� E�ective Merging Radii

There are numerous algorithms for merging clusters that one might consider ��� ��� Many of these rely on
a Euclidean distance metric as a measure of similarity between clusters� Unfortunately� these methods do not
necessarily take into account the actual spread of the data around each cluster centroid�

Before we can develop a merging algorithm� we need to answer the following question� �Given a set ofK clusters�
which two clusters can be most accurately represented by a single cluster�� To answer this question� we will treat
each cluster as a Gaussian probability density function� This is possible since each cluster is already speci�ed by
a position ��

i
� and a shape �	i�� We can then suggest that the two clusters most likely to be merged should be

�close� to one another� and there should be a reasonable amount of data lying between the two� there should not be
a signi�cant �gap� where no data samples exist�

To answer the question we just posed� we will introduce the concept of an e�ective merging radius� We will use
rij to denote the e�ective merging radius between clusters i and j� We de�ne rij to be the minimum eective cluster
radius such that the boundary of hyperellipsoids i and j intersect on the segment between their mean vectors �see






Figure ��� After considering all possible pairs of clusters in our data set� the two clusters yielding the smallest rij
will be merged� We can �nd this value as follows� First� we know that this is an eective cluster radius for both
hyperellipsoids� so a common point x lying on both boundaries must satisfy�

�x � �
i
�T	��i �x� �

i
� � rij ���

�x� �
j
�T	��j �x� �

j
� � rij ���

Since we are looking for an x which lies between �
i
and �

j
� we can express it as�
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In this equation� � � � � �� Substituting relationship ��� into ��� and ��� and simplifying� we get�
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Now since � � � � � and k� and k� are both positive� we get�

� �

p
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In summary� one must calculate the values k� and k� from the cluster statistics� use these values to �nd �� and
then calculate rij�

rij � k��
� ����

� Termination

So� given this method of calculating rij� we have speci�ed an order for merging clusters� Depending on the
application� the merging process is halted by either of two methods� One method is to reduce the current set of
clusters to a given size� Another method would be to specify a threshold value R� and use it to determine when
merging should stop� In this case� merging will only occur as long as the minimum value for rij is smaller than R�
As R increases� the �nal number of clusters will decrease�

�



Using this second method allows a user to pick a value for R in such a way that an optimal number of clusters is
produced� The way we propose doing this is to treat each cluster as a Gaussian distribution function� In this case�
R can be selected in such a way that a con�dence interval containing some percentage of the data falls outside of
this region�

Of course� many cluster merging algorithms have been developed in the past� and this order to merging clusters
may be incorporated into them� For instance� the clustering algorithm proposed in ��� attempts to merge any two
randomly selected clusters from the same class at any given iteration� Using our method of calculating rij could give
a more meaningful order to this algorithm�

� Example

Figure 
 displays a set of sample data that was generated by four separate Gaussian random number generators�
This data has been clustered to 
� clusters via the k�means clustering algorithm� The left�hand side of the �gure
shows the clusters before any merging takes place� After merging this set down to � clusters� we have a better
representation of the data� and in fact we have identi�ed the four separate Gaussian modes used to generate the
data�

� Conclusions and Future Work

This method for merging clusters looks not only at cluster positions� but also at cluster variances to determine
where clusters should be merged and where they should be left separated� The e�ective merging radius provides
a mechanism that allows us to determine the order that merging should occur for a given set of hyperellipsoidal
clusters�

One of the most important aspects of this problem that needs to be explored is the method for selecting a
threshold value R to terminate the merging process� Given a robust method for choosing R� this algorithm promises
to serve as a powerful tool for determining a good� representative set of hyperellipsoidal clusters for a give data set�
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Figure 
� Sample data� All cluster boundaries shown contain ��� of the data for a Gaussian distribution� The
data set was originally clustered to 
� clusters �left�� After merging to a set of � clusters� a much more reasonable
representation is obtained� The resulting clusters describe the underlying distribution of data samples well�

90% Data Inside Boundary (4.61)

80% Data Inside Boundary (3.22)

4 Clusters Left

Figure �� Plot of eective merging radii� This plot shows the minimum eective merging radius as cluster consolida�
tion takes place� As we reach a �good� solution� these values become large� indicating that empty areas in the data
space exist between clusters�
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